
HELIX
Release 2.0.0.dev

MIT Lincoln Laboratory

Dec 14, 2022

CONTENTS:

1 Getting Started 1
1.1 HELIX at a Glance . 1
1.2 Quick Install Guide . 2
1.3 Using the HELIX CLI . 2
1.4 Writing Your First Component . 3
1.5 Writing Your First Transform . 11
1.6 Developing a New Blueprint . 14
1.7 Further Reading & Next Steps . 21

2 Using HELIX 23
2.1 Building . 23
2.2 Dataset Generation . 24
2.3 Testing . 26
2.4 Using the Python API . 26

3 Extensions 29
3.1 Blind HELIX . 29

4 Reference 31
4.1 Blueprints . 31
4.2 Components . 33
4.3 Transforms . 37
4.4 Dependencies . 39
4.5 Testing . 42
4.6 Utilities . 43
4.7 CLI Commands . 45

5 About 49
5.1 Disclaimer . 49

Index 51

i

ii

CHAPTER

ONE

GETTING STARTED

1.1 HELIX at a Glance

The problem of malware similarity (and, more broadly, software similarity) is very difficult to assess. Measuring
relative performance of malware similarity solutions is very difficult without a large dataset of malware and high-
quality ground truth about the software similarity among samples of the dataset and acquiring this ground truth for
malware in the wild is nearly impossible at scale. Enter HELIX.

HELIX is a source code generation, mutation, and transformation framework primarily geared toward generating large,
synthetic datasets of functional malware with known, measurable software similarity. HELIX primarily consists of
three main primitives:

Blueprints
Core project layouts including templated boilerplate and methods for generating and building artifacts from a set
of Components and Transforms. For example, a C++ project build with CMake.

Components
Small, configurable pieces of source code that represent a specific implementation of a specific functionality
along with associated metadata. For example, a specific implementation of downloading a file from a given
URL using the cURL library.

Transforms
Modifications of either source code or a built artifact along with associated metadata. For example, the Linux
binutil strip which removes debugging symbols from a compiled binary.

A HELIX build is made up of exactly one Blueprint, zero or more configured Components, and zero or more configured
Transforms. The result of a HELIX build is one or more artifacts (for example, a compiled binary build from all of
the Components and transformed by all of the Transforms) and a collection of metadata, aggregated from the included
Blueprints, Components, and Transforms.

1

HELIX, Release 2.0.0.dev

While developing individual Components and Transforms for HELIX is initially time-consuming, the effort scales well,
as the more Components and Transforms are written for HELIX the larger dataset it is capable of generating.

1.2 Quick Install Guide

1.2.1 Prerequisites

HELIX is supported by Python (>=3.5) on both Windows and Linux and is installed with pip. Both Python and pip
must be installed on your system before attempting to install HELIX.

1.2.2 Installation

To install HELIX from PyPI with pip, run:

pip install helix

1.2.3 Additional Dependencies

Some HELIX Blueprints, Components, and Transforms include additional, external dependencies which must be in-
stalled before they can be used in HELIX builds. To install all of these dependencies, use the install HELIX CLI
command after installing HELIX with pip:

helix install

Note: Depending on your platform, the above command may require root/Administrator priveleges. Some dependen-
cies may also need to be manually installed - these will be listed in the output of the above command.

1.2.4 Development

To set up a development environment, first clone the HELIX repo. Next, install additional, optional extensions for
development and testing by running (from the root of the repo):

pip install .[development,testing]

1.3 Using the HELIX CLI

Once HELIX is installed, you can use the HELIX CLI by simply running:

helix <command>

You can list all of the installed Blueprints, Components, and Transforms with:

helix list

2 Chapter 1. Getting Started

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/

HELIX, Release 2.0.0.dev

After installing the required dependencies (see Additional Dependencies) for Blueprints, Components, and Transforms,
you can generate HELIX builds with the build command. For example, to build the cmake-cpp Blueprint with the
configuration-example Component and the strip Transform and write the output to ./example, run:

helix build blueprint cmake-cpp ./example \
-c configuration-example:second_word=foo \
-t strip

This should output a message listing the relevant metadata tags and the built artifacts (in this case, a single, UPX-packed
binary that simply prints “hello foo”).

Note: For more detail on the build command and additional examples, see Building.

HELIX also includes some simple dataset generation tools. To generate a dataset of 25 samples consisting of 3 Com-
ponents each using the random strategy and selecting Components from a few different configurations of the example
Components, run:

helix dataset-similarity random dataset \
--sample-count 25 \
--component-count 3 \
-c minimal-example \
configuration-example:first_word=hello,second_word=world \
configuration-example:first_word=bonjour,second_word='le monde' \
configuration-example:first_word=ciao,second_word=mondo \
configuration-example:first_word=hola,second_word=mundo \
configuration-example:first_word=hallo,second_word=welt \
-t strip

Note: For more detail on the dataset commands and additional examples, see Dataset Generation.

1.4 Writing Your First Component

1.4.1 Building a Python Package

HELIX makes use of Python entrypoints to discover installed Blueprints, Components, and Transforms. Additional
Blueprints, Components, and Transforms can be installed by bundling them in a Python package with an entrypoint in
one of the following groups:

• helix.blueprints

• helix.components

• helix.transforms

The name of the entrypoint should correspond with the name of the Blueprint, Component, or Transform, and the
object reference should refer to the class of its implementation.

To start, create a basic python package named helix-example by creating the following directory structure:

.
helix_example/

(continues on next page)

1.4. Writing Your First Component 3

https://packaging.python.org/specifications/entry-points/

HELIX, Release 2.0.0.dev

(continued from previous page)

__init__.py
setup.py

The __init__.py file should be blank and setup.py should consist of the following:

setup.py

from setuptools import setup
from setuptools import find_packages

setup(
name="helix-example",
version="1.0.0",
author="Your Name Here",
author_email="you@your-domain",
description="An example external HELIX package",
url="http://your-domain",
packages=find_packages(),
python_requires=">=3.5",
install_requires=[],
include_package_data=True,
zip_safe=False,
entry_points={

"helix.blueprints": [],
"helix.components": [],
"helix.transforms": [],
"helix.tests": []

},
)

This is the basic layout of a Python package - in later sections, we will create Components and Transforms and register
them as entrypoints. You can install the package with:

pip install .

Note: For ease of development, it can be useful to install the Python package in editable mode to avoid having to
reinstall the package every time you make changes. You can do this by instead running:

pip install -e .

1.4.2 Writing the Component

Components are simply Python classes that implement the Component interface. To write a simple component, all you
need to do is subclass this base class and implement the required abstract methods.

Let’s start by adding a components directory to our Python package with an example module for our new Component.
The package directory structure should look like the following:

.
helix_example/

(continues on next page)

4 Chapter 1. Getting Started

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

HELIX, Release 2.0.0.dev

(continued from previous page)

components/
example.py
__init__.py

__init__.py
setup.py

Inside of example.py we’ll create a simple Component by subclassing Component:

example.py

from helix import component

class ExampleComponent(component.Component):
"""A simple example component."""

name = "example-component"
verbose_name = "Example Component"
type = "example"
version = "1.0.0"
description = "A simple example component"
date = "2020-10-20 12:00:00.000000"
tags = (("group", "example"),)

blueprints = ["cmake-c", "cmake-cpp"]

functions = [r"""
#include <stdio.h>

void ${hello_world}() {
printf("hello world\n");

}
"""]
calls = {

"main": [
r'${hello_world}();'

]
}
globals = ["hello_world"]

We start by defining required metadata (name, verbose_name, type, etc.). Next, we need to define which Blueprints
this Component is designed to work with - since we’re writing code that could be compiled as either C or C++ code, we
support both CMakeCBlueprint and CMakeCBlueprint by name. Next, we define a simple function hello_world
that simply prints "hello world" by adding it to the the functions list for the Component. Note that the function
name is surrounded in template parameters (${...}). These template parameters tell the build system how to finalize
Components so that duplicate function names do create conflicts. Any template parameters like these that need to be
deduplicated by the build system should be included in the globals property.

Finally, we’ll add a single call at the main callsite (defined by the cmake Blueprints - see helix.blueprints.
CMakeCBlueprint.CALLSITE_MAIN) which calls our hello_world function. callsites are defined by each indi-
vidual Blueprint and provide a way for Components to invoke their functions. The cmake Blueprints’ main callsite, as
the name suggests, allows Components to call functions inside of the generated binary’s main function. We can make
use of this callsite by adding it to the calls property for the Component.

1.4. Writing Your First Component 5

HELIX, Release 2.0.0.dev

Note: Because the printf function is a part of the stdio library, we have to add an include that references it. We
can simply add this to our function definition.

Our Component definition is now complete.

1.4.3 Registering the Component

To register the component so that HELIX can find it, we need to add an entrypoint in the group helix.components
to our Python package’s setup.py. Make the following change to setup.py:

setup.py

...
entry_points={

...
"helix.components": [

"example-component = helix_example.components.example:ExampleComponent"
]
...

}
...

Note: The name property of our new Component must match the name of the entrypoint.

To update the entrypoint list, reinstall the Python package (even if you installed it in editable mode):

pip install .

Check that our new Component is registered with the HELIX CLI:

helix list

The output should include our new example Component:

Available Components:
...
Example Component (1.0.0) [example-component]
...

Finally, build a cmake-cpp Blueprint with our Component to make sure that it works:

helix build blueprint cmake-cpp ./example -c example-component

Run the generated artifact binary - it should simply print “hello world” and exit.

Note: While developing a new component, it can be useful to build in verbose mode (-v/--verbose) to see the full
output of the build commands to assist in debugging.

6 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

1.4.4 Adding Configuration Options

Configuration options may be specified for Components in the options property. Make the following changes to the
ExampleComponent class to define an optional configuration parameter message which will be printed to the console:

example.py

from helix import utils

...

class ExampleComponent(component.Component):
...
options = {"message": {"default": "hello world"}}
...

The following lines may be removed:

functions = [r"""
#include <stdio.h>

void ${hello_world}() {
printf("hello world\n");
}
"""]
calls = {
"main": [
r'${hello_world}();'
]
}
globals = ["hello_world"]

TEMPLATE = r"""
#include <stdio.h>

void ${hello_world}() {
printf("${message}\n");

}
"""

def generate(self):
function = utils.substitute(self.TEMPLATE, message=self.configuration["message"])

self.functions = [function]
self.calls = {

"main": [
r'${hello_world}();'

]
}
self.globals = ["hello_world"]

Components can choose to define their functions, calls, and globals properties inside of a generate method.
This method is run after configuration parameters are parsed and these parameters are available in the configuration
property as a dict and can be used in the generate method as above.

1.4. Writing Your First Component 7

HELIX, Release 2.0.0.dev

Reinstall the Python package (if not installed in editable mode) and then create a new HELIX build, supplying the new
configuration parameter:

helix build blueprint cmake-cpp ./example -c example-component:message="goodbye world"

Run the generated artifact binary - it should now print “goodbye world” and exit.

1.4.5 Using External Template Files

Once a Component becomes relatively complex, it can be a good idea to move the templated function code belonging
to the Component into its own file so that it is easier to track changes and so that syntax highlighting can be enabled for
ease of development. HELIX includes a couple of utilities to help you do that. In this section, we’ll move the source
code for our ExampleComponent to an external example.c file.

To start, we’ll need to configure our Python package so that it includes non-python files when it is compressed into its
distributable form. To do this, add a file named MANIFEST.in to the root of your python package with the following
contents:

MANIFEST.in

recursive-include helix_example *.c

This tells the Python package manager that any files with the extension .c should be included with the package.

Next, write create a file in the same directory as example.py called example.c. The package directory structure
should look like:

.
helix_example/

components/
example.py
example.c
__init__.py

__init__.py
setup.py

Add the following content to example.c:

// example.c

#include <stdio.h>

void ${example}() {
printf("${message}\n");

}

Finally, modify the ExampleComponent class in example.py as follows:

example.py

class ExampleComponent(component.Component):
...

The following lines may be removed:
(continues on next page)

8 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

(continued from previous page)

TEMPLATE = r"""
#include <stdio.h>
#
void ${hello_world}() {
printf("${message}\n");
}
"""

def generate(self):
...

template = utils.source(__name__, "example.c")

...

function = utils.substitute(template, message=formatted)

...

We make use of the source function here to fetch the source of the included template file, relative to the current
package path.

You can now reinstall the package (if not installed in editable mode) and test these Component changes. The Component
should function exactly the same, but the Python package is now a bit more maintainable.

1.4.6 Adding Dependencies

HELIX includes a dependency installation/management system for Blueprints, Components, and Transforms for man-
aging external dependencies that cannot be installed with pip. Lets add a simple apt dependency to our Component
- cowsay to improve the visual output of our printed message.

Note: From here on, this tutorial only works on a Linux platform. There are dependency types defined for Windows,
however, and you can find examples of their use in HELIX source.

Add the following to the ExampleComponent class:

example.py

from helix import utils

...

class ExampleComponent(component.Component):
...

dependencies = [utils.LinuxAPTDependency("cowsay")]

...

def generate(self):
(continues on next page)

1.4. Writing Your First Component 9

HELIX, Release 2.0.0.dev

(continued from previous page)

...

cowsay = utils.find("cowsay")
output, _ = utils.run(

"{} {}".format(cowsay, self.configuration["message"]), cwd="./"
)
formatted = repr(output.decode("utf-8")).replace("'", "")

...

function = utils.substitute(self.TEMPLATE, message=formatted)

Reinstall the Python package (if not in editable mode) and install dependencies for our Component:

helix dependencies component example-component

Note: You may need to run the above command as root/Administrator to successfully install dependencies.

Finally, build the cmake-cpp Blueprint again with our updated Component:

helix build blueprint cmake-cpp ./example -c example-component

You should now get an output similar to the following when running the generated artifact binary:

< hello world >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Note: It’s worth noting here that the binary generated by HELIX in this example does not actually make use of
cowsay. Instead, cowsay is invoked during configuration of the Component, and the cowsay string is injected into the
generated source code. A more advanced approach, left as an exercise for the reader, would be to invoke cowsay from
the generated artifact instead (e.g., with a Linux system call written in C/C++).

1.4.7 Testing the Component

HELIX includes some minimal utilities for testing Components with the unittest framework. To write a unit test for
our Component, add the following to the example.py module:

example.py

from helix import tests

...
(continues on next page)

10 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

(continued from previous page)

class ExampleComponentTests(tests.UnitTestCase, tests.ComponentTestCaseMixin):
blueprint = "cmake-cpp"
component = "example-component"

This will create a couple of simple unit tests from TestCaseMixin.

Note: When developing Components, at a minimum it is recommended to define the simple testing class above. This
will introduce simple build tests as well as a test that ensures that your Component’s templated globals are configured
correctly (for more details, see TestCaseMixin).

To register this unit test with HELIX, add an entrypoint to the helix.tests group in the Python package’s setup.py
as follows:

setup.py

...
entry_points={

...
"helix.tests": {

"example-component = helix_example.components.example:ExampleComponentTests"
}
...

}
...

Finally, to run unit tests for Blueprints, Components, and Transforms, run:

helix test unit

1.5 Writing Your First Transform

Prior to following this tutorial, you’ll need to have a python package set up to extend HELIX (see Building a Python
Package).

1.5.1 Writing the Transform

Similar to Components, Transforms are simply Python classes that implement the Transform interface.

Let’s start by adding a transforms directory to our Python package with an example module for our new Transform.
The package directory structure should look like the following:

.
helix_example/

transforms/
example.py
__init__.py

__init__.py
setup.py

1.5. Writing Your First Transform 11

HELIX, Release 2.0.0.dev

Inside of example.py we’ll create a simple Transform by subclassing Transform :

example.py

import os
import shutil
import base64

from helix import transform

class ExampleTransform(transform.Transform):
"""A simple example transform."""

name = "example-transform"
verbose_name = "Example Transform"
type = transform.Transform.TYPE_ARTIFACT
version = "1.0.0"
description = "A simple example transform"
tags = (("group", "example"),)

def transform(self, source, destination):
"""Print the contents of the binary.

This transform doesn't actually do anything, it is just a simple
example that prints the contents of the input file, base64 encoded.
"""

source = os.path.abspath(source)
destination = os.path.abspath(destination)

with open(source, "rb") as f:
print(base64.b64encode(f.read()))

shutil.copy(source, destination)

This simple transform just prints the base64 encoding of the built artifact and does not modify it at all. There are a
couple of things to note:

1. The transform type is TYPE_ARTIFACT - this indicates that the transform should be applied to artifacts after the
Blueprint is built, as opposed to TYPE_SOURCE which is applied to source files before they are built.

2. The required transform method must always write a resulting file from source to destination, even if it does
not modify the contents.

12 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

1.5.2 Registering the Transform

Similar to Components, Transforms must be added to the entrypoint group helix.transforms in our Python pack-
age’s setup.py. Make the following change to setup.py:

setup.py

...
entry_points={

...
"helix.transforms": [

"example-transform = helix_example.transforms.example:ExampleTransform"
]
...

}
...

Note: Similar to Components, the name property of our new Component must match the name of the entrypoint.

To update the entrypoint list, reinstall the Python package (even if you installed it in editable mode):

pip install .

Check that our new Transform is registered with the HELIX CLI:

helix list

The output should include our new example Transform:

Available Transforms
...
Example Transform (1.0.0) [example-transform]
...

Finally, build a cmake-cpp Blueprint with our Transform to make sure that it works:

helix build blueprint cmake-cpp ./example -t example-transform

Note: The generated binary will not do anything, but during generation you should see our Transform print the base64
encoding of the resulting artifact.

1.5.3 Adding Configuration Options

Adding and using configuration options to Transforms can be done in the same way as adding configuration options to
Components (see Adding Configuration Options).

1.5. Writing Your First Transform 13

HELIX, Release 2.0.0.dev

1.5.4 Adding Dependencies

Specifying Transform dependencies can be done in the same way as specifying Component dependencies (see Adding
Dependencies).

1.5.5 Testing the Transform

Writing unit tests for Transforms can be done in the same way as writing unit tests for Components (see Testing the
Component).

1.6 Developing a New Blueprint

Blueprints are at the core of how HELIX generates a build. A properly written Blueprint is generic, reusable, and
flexible - designed to work well with many or few Components in many different configurations. Good Blueprints do
not define program behavior other than some minimal control flow to set up callsites - that is left to the Components
integrated with a Blueprint in a build.

Most developers will not need to write a Blueprint for HELIX - making use of the existing Blueprints built in to HELIX
is sufficient for most usecases. However, HELIX is flexible enough to support practically any programming language
and any build system - developers simply need to write a Blueprint for their target platform. To demonstrate this, this
tutorial will guide you through the process of writing a new Blueprint to support Python.

Prior to following this tutorial, you’ll need to have a python package set up to extend HELIX (see Building a Python
Package).

1.6.1 Writing the Blueprint

Similar to Components and Transforms, Blueprints are simply Python classes that implement the Blueprint interface.

Let’s start by adding a blueprints directory to our Python package with a python module for our new Blueprint.
The package directory structure should look like the following:

.
helix_example/

blueprints/
python.py
__init__.py

__init__.py
setup.py

Inside of python.py we’ll create a simple Blueprint by subclassing Blueprint:

python.py

import os

from helix import blueprint
from helix import utils

class ExamplePythonBlueprint(blueprint.Blueprint):
"""An example Python blueprint."""

(continues on next page)

14 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

(continued from previous page)

name = "example-python"
verbose_name = "Example Python Blueprint"
type = "python"
version = "1.0.0"
description = "A simple Python blueprint"

CALLSITE_STARTUP = "startup"
"""Called at program startup.

Calls at this callsite are called once and expected to return.
"""

callsites = [CALLSITE_STARTUP]

TEMPLATE = """${functions}

if __name__ == "__main__":
${startup}

"""

def filename(self, directory):
"""Generate a build file name in the given directory.

Args:
directory (str): The path to the build directory.

Returns:
The file path of the build file.

"""

return os.path.join(directory, "{}.py".format(self.build_name))

def generate(self, directory):
functions = "\n".join(self.functions)

startup = self.calls.pop(self.CALLSITE_STARTUP, [])
startup = "\n ".join(startup) or "pass"

source = utils.substitute(self.TEMPLATE, functions=functions, startup=startup)

with open(self.filename(directory), "w") as f:
f.write(source)

def compile(self, directory, options):
"""Nothing to do here.

Python is an interpreted language, so we don't really need to do
anything in the ``compile()`` step. We still need to pass the build
artifacts to the output, however.
"""

(continues on next page)

1.6. Developing a New Blueprint 15

HELIX, Release 2.0.0.dev

(continued from previous page)

return [self.filename(directory)]

Blueprints have three main components:

1. A set of callsites - where components may register calls to functions that they define.

2. A generate method which generates source code from the collection of Components provided, using the
functions and calls properties of the Blueprint class. These properties aggregate functions and calls provided
by all of the included Components. Source code is written to the given directory path and a list of source files is
returned.

3. A compile method which compiles the given directory of source files and returns a list of build artifacts. In this
case, since Python is not compiled, this simply returns the path to the generated Python file.

This simple Python Blueprint defines a single callsite called startup and generates a single python file in the target
directory with all included functions and calls to startup functions in __main__.

Note that the Blueprint does not need to be concerned with how or when Transforms are applied. HELIX will apply
Transforms automatically during build based on their type - Blueprints simply need to know how to generate valid
source code from Components and compile that source code into build artifacts.

Note: It’s generally good practice to define callsite names as constants on the Blueprint class for easier use by Com-
ponents (e.g., CALLSITE_STARTUP).

1.6.2 Registering the Blueprint

Similar to Components and Transforms, Blueprints must be added to the entrypoint group helix.blueprints in our
Python package’s setup.py. Make the following change to setup.py:

setup.py

...
entry_points={

...
"helix.blueprints": [

"example-python = helix_example.blueprints.python:ExamplePythonBlueprint"
]
...

}
...

Note: Similar to Components and Transforms, the name property of our new Blueprint must match the name of the
entrypoint.

To update the entrypoint list, reinstall the Python package (even if you installed it in editable mode):

pip install .

Check that our new Blueprint is registered with the HELIX CLI:

16 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

Available Blueprints
...
Example Python Blueprint (1.0.0) [example-python]
...

Finally, build an empty example-python Blueprint to make sure that it works:

helix build blueprint example-python ./example

Take a look at the generated Python script - it’s not particularly interesting right now but we’ll add a Component for
our new Blueprint next.

1.6.3 Writing a Component for the Blueprint

Let’s create a minimal Component to test our new Blueprint in much the same way we created our first Component in
Writing Your First Component.

First, let’s add a new module to the components directory of our Python package called python to house our new
Component. The package directory structure should look like the following:

.
helix_example/

components/
example.py
python.py
__init__.py

__init__.py
setup.py

Inside of python.py we’ll create a simple Component:

python.py

from helix import component

class ExamplePythonComponent(component.Component):
"""An example Python component."""

name = "example-python-component"
verbose_name = "Example Python Component"
type = "example"
version = "1.0.0"
description = "An example Python component"
date = "2020-10-20 12:00:00.000000"
tags = (("group", "example"),)

blueprints = ["example-python"]

functions = [
"""def ${example}():

print("hello world")
"""

(continues on next page)

1.6. Developing a New Blueprint 17

HELIX, Release 2.0.0.dev

(continued from previous page)

]
calls = {"startup": ["${example}()"]}
globals = ["example"]

This is a very simple Component that defines one function that prints “hello world” and registers a call to it at the
startup callsite.

Next, we need to register the new Component with the helix.components entrypoint group. Make the following
change to setup.py:

setup.py

...
entry_points={

...
"helix.components": [

...
"example-python-component = helix_example.components.

→˓python:ExamplePythonComponent",
...

]
...

}
...

To update the entrypoint list, resintall the Python package (even if you installed it in editable mode):

pip install .

Check that the new Component is registerd with the HELIX CLI:

helix list

The output should include the new Component:

Available Components:
...
Example Python Component (1.0.0) [example-python-component]
...

Now we can test our new Blueprint with the new Component:

helix build blueprint example-python ./example -c example-python-component

The generated Python script should simply print “hello world” and exit.

18 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

1.6.4 Adding Another Callsite

Blueprints are not limited to exposing only a single, trivial callsite. Blueprints can evoke very sophistocated behavior
from their Components by exposing multiple different types of callsites. To demonstrate this, let’s add another callsite
to our Blueprint called loop which is called repeatedly inside of a loop defined in the Blueprint.

Make the following changes to the Blueprint:

blueprints/python.py

...

Class ExamplePythonBlueprint(blueprint.Blueprint):
...

CALLSITE_LOOP = "loop"
"""Called every five seconds, indefinitely.

Calls this callsite repeatedly, inside of a loop, until the program is
terminated.
"""

callsites = [CALLSITE_STARTUP, CALLSITE_LOOP]

...

TEMPLATE = """import time

${functions}

if __name__ == "__main__":
${startup}

while True:
${loop}

time.sleep(5)
"""

def generate(self, directory):
...

loop = self.calls.pop(self.CALLSITE_LOOP, [])
loop = "\n ".join(loop) or "break"

...

source = utils.substitute(
self.TEMPLATE, functions=functions, startup=startup, loop=loop

)

...

Note that we’ve chosen to set the loop template parameter to break if no calls are registered at that callsite. This
makes our Blueprint more flexible - if no calls are registered for the loop callsite the Blueprint will simply break out

1.6. Developing a New Blueprint 19

HELIX, Release 2.0.0.dev

of its infinte loop.

Next, let’s update the simple testing Component for this Blueprint to make use of the new callsite. Make the following
changes to the Component:

components/python.py

...

class ExamplePythonComponent(component.Component):
...

functions = [
...
"""from datetime import datetime

def ${now}():
print(datetime.now())

""",
...

]

...

calls = {
...
"loop": ["${now}()"],
...

}

...

globals = ["example", "now"]

This adds a single function which prints the current date and time and adds a call at the loop callsite to that new
function.

After reinstalling the python package (if not installed in editable mode), we can now create a new build with our updated
Blueprint and Component:

helix build blueprint example-python ./example -c example-python-component

You should now have a Python script that prints “hello world” once and then repeatedly prints the current time every
five seconds indefinitely.

Note: Blueprint Flexibility: When developing new Blueprints, it can be tempting to add a lot of project structure and
even some core program functionality to Blueprints by implementing various callsites. A best practice is to limit the
functionality inside of a Blueprint to only control flow and ensure that all callsites are optional. Remember: callsites
must be able to support zero or more calls from components. A generic Blueprint is a reusble Blueprint.

20 Chapter 1. Getting Started

HELIX, Release 2.0.0.dev

1.6.5 Adding Dependencies

Specifying Blueprint dependencies can be done in the same way as specifying Component dependencies (see Adding
Dependencies).

1.6.6 Testing the Blueprint

Writing unit tests for Transforms can be done in the same way as writing unit tests for Components (see Testing the
Component).

1.7 Further Reading & Next Steps

• The complete python package created through the course of this tutorial is included in the examples/ directory
of the HELIX repo for your reference.

• Read through the detailed Using HELIX section for more information on using specific parts of HELIX.

• Browsing the source code of built-in HELIX Blueprints, Components, and Transforms can be a good way to
learn about HELIX conventions, tagging, and design.

• Check out the Reference documentation for more detail on any of the interfaces provided by HELIX, a listing of
the included Blueprints, Components, and Transforms, and details on all of the CLI commands.

1.7. Further Reading & Next Steps 21

HELIX, Release 2.0.0.dev

22 Chapter 1. Getting Started

CHAPTER

TWO

USING HELIX

2.1 Building

There are a couple of supported ways to build a Blueprint and a collection of Components and Transforms with the
HELIX CLI. Namely, you can specify a configuration via command line arguments or you can generate a build from a
JSON configuration file.

2.1.1 Building with CLI Arguments

A simple example (given elsewhere in this documentation) builds the cmake-cpp Blueprint with the
configuration-example Component and the strip Transform and writes the output to ./example:

helix build blueprint cmake-cpp ./example \
-c configuration-example:second_word=foo \
-t strip

It is also possible to specify multiple components and transforms to generate an arbitrarily complex build. For example,
using some of HELIX’s built-in Components and Transforms, we can generate a build that:

1. Downloads a remove file (https://www.google.com/).

2. Compresses the file using zlib.

3. Encrypts the compressed file with aes and a fixed key.

4. Deletes the unencrypted file.

5. Deletes the uncompressed file.

6. Timestomps the compressed, encrypted download.

We can then strip and UPX compress this build, all using only built-in HELIX Components and Transforms:

helix build blueprint cmake-cpp example \
-c linux-libcurl-remote-file-copy:url=https://www.google.com/,output=test.txt \

linux-zlib-compress-data-compressed:input=test.txt,output=test.txt.gz \
linux-openssl-aes-encrypt-data-encrypted:input=test.txt.gz,output=test.txt.gz.enc,

→˓key=abcdefghijklmnopqrstuvwxyzabcdef \
linux-remove-file-deletion:path=test.txt \
linux-remove-file-deletion:path=test.txt.gz \
linux-utime-timestomp:path=test.txt.gz.enc,timestamp="2010-01-01 12:00:00" \

-t strip upx

23

https://www.google.com/

HELIX, Release 2.0.0.dev

2.1.2 Building from JSON Configuration

The HELIX CLI can also take configuration from a JSON file. For example, we can build the following configuration:

{
"name": "example",
"blueprint": {"name": "cmake-cpp"},
"components": [

{
"name": "minimal-example",
"configuration": {}

},
{

"name": "configuration-example",
"configuration": {

"second_word": "example"
}

}
],
"transforms": [

{
"name": "replace-example",
"configuration": {

"old": "hello",
"new": "goodbye"

}
},
{

"name": "strip"
}

]
}

by running the following command:

helix build json configuration.json ./example

2.1.3 External Components

The build commands also support loading Components from external sources and downstream libraries using the
helix.component.Loader interface.

2.2 Dataset Generation

HELIX includes a few utilities for generating simple datasets with known ground truth from a library of Blueprints,
Components, and Transforms. These datasets fall into two categories:

Similarity Datasets
Ground truth labels for these datasets consists of labels for individual samples gathered by aggregating the labels
of the included Components. The “similarity” of any two samples can be computed by comparing their lists of
labels. These datasets are useful for evaluating program similarity approaches.

24 Chapter 2. Using HELIX

HELIX, Release 2.0.0.dev

Classification Datasets
Samples in these datasets are assigned to a synthetic “class”, where members of the class will be more similar
to other members of the same class and different from members of other classes. These datasets are useful for
evaluating classification approaches based on program similarity.

2.2.1 Generating Similarity Datasets

HELIX provides the aptly named dataset-similarity command for generating similarity datasets using combina-
tions of Components. There are a number of different Component selection strategies available. In the simplest case,
the following command uses the simple strategy (where only a single Component is included per sample), writing
results to a directory named dataset, for a few different configurations of the configuration-exampleComponent.

helix dataset-similarity simple dataset \
-c configuration-example:first_word=hello,second_word=world \
configuration-example:first_word=bonjour,second_word='le monde' \
configuration-example:first_word=ciao,second_word=mondo \
configuration-example:first_word=hola,second_word=mundo \
configuration-example:first_word=hallo,second_word=welt

The generated dataset consists of five samples, one for each included Component configuration. Build output is logged
to the sample directories in dataset and dataset labels are written to dataset/labels.json.

The simple strategy isn’t much more than a sanity check - more sophisticated strategies are also supported: random
which randomly selects combinations of the provided Components and walk which randomly selects an initial combi-
nation of Components, then randomly permutes a small portion of them each time. Supported Transforms can also be
applied to all samples in a dataset. For example, the following command generates a dataset using the random strategy
with the same Components and configurations above as well as the minimal-example Component, including three
Components per sample, and applying the strip Transform to all samples:

helix dataset-similarity random dataset \
--sample-count 25 \
--component-count 3 \
-c minimal-example \
configuration-example:first_word=hello,second_word=world \
configuration-example:first_word=bonjour,second_word='le monde' \
configuration-example:first_word=ciao,second_word=mondo \
configuration-example:first_word=hola,second_word=mundo \
configuration-example:first_word=hallo,second_word=welt \
-t strip

2.2. Dataset Generation 25

HELIX, Release 2.0.0.dev

2.2.2 Generating Classification Datasets

Coming soon. . .

2.2.3 External Components

Dataset generation also supports loading Components from external sources and downstream libraries using the helix.
component.Loader interface.

2.3 Testing

HELIX includes three different categories of tests:

system
Unit tests for HELIX’s core system functionality - these are typically only run by core HELIX developers.

unit
Unit tests for individual Blueprints, Components, and Transforms - these are written by internal and external
developers and can be used to test custom Blueprints, Components, and Transforms as well as those built into
HELIX.

integration
Integration tests for running multiple sets of Blueprints, Components, and Transforms together to ensure they
work in concert.

These test suites can be run with the the test CLI command. For example, to run all unit tests for Blueprints, Com-
ponents, and Transforms, run:

helix test unit

2.4 Using the Python API

HELIX Blueprints, Components, and Transforms can also be used directly by instantiating and manipulating the rele-
vant classes directly in Python. This can make scripting with HELIX somewhat easier.

For example, the following script generates a simple HELIX build with a few simple Components and Transforms:

from helix import utils

output = "./example"

MinimalExampleComponent = utils.load("helix.components", "minimal-example")
minimal = MinimalExampleComponent()
minimal.generate()
minimal.finalize()

ConfigurationExampleComponent = utils.load("helix.components", "configuration-example")
config = ConfigurationExampleComponent()
config.configure(second_word="example")
config.generate()
config.finalize()

(continues on next page)

26 Chapter 2. Using HELIX

HELIX, Release 2.0.0.dev

(continued from previous page)

components = [minimal, config]

ReplaceExampleTransform = utils.load("helix.transforms", "replace-example")
replace = ReplaceExampleTransform()
replace.configure(old="hello", new="goodbye")

StripTransform = utils.load("helix.transforms", "strip")
strip = StripTransform()

transforms = [replace, strip]

CMakeCppBlueprint = utils.load("helix.blueprints", "cmake-cpp")
blueprint = CMakeCppBlueprint("example", components, transforms)
artifacts = blueprint.build(output)

for artifact in artifacts:
print(artifact)

2.4. Using the Python API 27

HELIX, Release 2.0.0.dev

28 Chapter 2. Using HELIX

CHAPTER

THREE

EXTENSIONS

HELIX is intended to be highly modular and support external, downstream libraries fairly transparently. Libraries
can expose Blueprints, Components, and Transforms via Python entrypoints. Additionally, the HELIX CLI supports
external Component loading from a file in many of its commands via the -l/--load argument. Downstream libraries
can support this behavior by implementing the helix.component.Loader interface.

Existing, open-source extensions to HELIX which provide additional Blueprints, Components, or Transforms include:

3.1 Blind HELIX

Blind HELIX is a Component harvesting tool that extracts Components from existing libraries via program slicing.
It supports VCPKG for automatically extracting Components from well over 1000 open-source libraries. Harvested
Components should only be used for static analysis, however.

29

https://packaging.python.org/specifications/entry-points/
https://github.com/helix-datasets/blind-helix
https://github.com/microsoft/vcpkg

HELIX, Release 2.0.0.dev

30 Chapter 3. Extensions

CHAPTER

FOUR

REFERENCE

4.1 Blueprints

class helix.blueprint.Blueprint(build_name, components=None, transforms=None, *args, **kwargs)
A common base class for all blueprints.

abstract property callsites

A list of valid callsites which Components may use.

A good practice is to define these as constants on the Blueprint class as well so they may be referenced
directly by components and don’t rely on matched strings.

sane()

Ensure the current list of components is sane.

This method is optional and allows the developer to define additional constraints on the components sup-
ported by this Blueprint. This method should raise exceptions if the build is not sane.

property tags

Returns the union of all tags involved in this blueprint.

Simply aggregates and dedups all tags on Components and Transforms.

property functions

Aggregate all functions from included Components.

property calls

Aggregate all calls from included Components.

abstract generate(directory)
Generates a source directory from an iterable of components.

The components passed to this class will be finalized prior to calling this so that their source code is readily
available. This function is responsible for writing configured components to the target output directory.

Parameters
directory (str) – A directory to write the resulting generated source code - you may assume
that this directory already exists and is writable.

Returns
A list of generated source files.

Note: Component order matters here - this is the order in which calls and includes will be inserted into
the generated source so if this is important you should make sure the order of components passed to this

31

HELIX, Release 2.0.0.dev

function is what you want.

transform(type, targets)
Applies all Transforms of a given type.

Parameters

• type (str) – The type of transform to apply.

• targets (str) – A list of targets to transform.

abstract compile(directory, options)
Compiles the target directory.

Compiles a directory generated with generate, applies any artifact transformations, and returns a list of
build artifacts.

Parameters

• directory (str) – A directory with generated source code.

• options (dict) – An optional dictionary of additional build options that should be re-
spected by this function. This will contain things like stdout, stderr and propagate
for display options.

Returns
A list of built artifacts.

Note: In practice this may frequently just be a bunch of calls to os.system to invoke the target build
system of this Blueprint.

build(directory, options=None)
Fully builds this Blueprint.

Generates code from Components, applies source Transforms, compiles code, and applies artifact Trans-
forms.

Parameters

• directory (str) – A directory to write the resulting generated source code.

• options (dict) – An optional dictionary of additional build options that should be used
by compile.

Returns
A list of built and transformed artifacts.

dependencies = []

A list of external dependencies which must be installed.

This list is optional, but must consist of zero or more instances of Dependency (or subclasses) which may
be installed by users.

abstract property description

classmethod install(verbose=False)
Install all dependencies.

This reruns dependency installation regardless of if it has been installed already. This should be safe because
of the requirement that dependency installation methods be repeatable but can be inefficient. Users can
check the installed() method to determine if the installation should be rerun.

32 Chapter 4. Reference

HELIX, Release 2.0.0.dev

Parameters
verbose (bool) – Verbosity.

classmethod installed()

Check if all dependencies have been installed.

Returns
True if all dependencies have been installed already, and False otherwise.

abstract property name

A simple name.

Names should consist of [a-z-]. Make use of the verbose_name property if you would like a pretty-
printable version of this name.

classmethod string()

abstract property type

A short type descriptor.

This should be set to some constant (a short string) defined in some common location.

abstract property verbose_name

Verbose name for pretty printing.

abstract property version

A version number.

This should be a string using Semantic Versioning.

4.2 Components

class helix.component.Component(*args, **kwargs)
A common base class for all components.

A component represents a single, configurable unit of functionality. This may be as simple as a single function
or as complex as an entire command and control library.

DATE_FORMAT = '%Y-%m-%d %H:%M:%S.%f'

abstract property date

A relevant date.

Possibly the initial publication date of this sample or compile timestamp. This does not need to be exact
but may be useful for some applications of the final dataset and will be included.

Note: The date should be in a string format parsable with DATE_FORMAT

abstract property blueprints

A list of the Blueprints supported by this component.

This should be a list of the string names of supported Blueprint and must match the corresponding
Blueprint.name property.

4.2. Components 33

https://semver.org/

HELIX, Release 2.0.0.dev

functions = []

A list of functions included in this Component.

This list of functions may be defined either in the Component class (for relatively simple components) or
may be populated by the implementation of the generate() method.

calls = {}

A dictionary of callsites (defined by Blueprints) to call strings.

This dictionary of calls may be defined either in the Component class (for relatively simple components)
or may be populated by the implementation of the generate() method.

globals = []

A list of template parameter names that must be globally unique.

These template parameters are present in the functions and calls parameters and will be substituted for
a globally unique value when this Component is finalized. This list should encompass all of the parts of
this Component that must be globally unique (e.g., function names, global variable names). A good test to
ensure that all of the globally unique parameters have been templated is to try to build a Blueprint with two
instances of this component.

property generated

Indicates if this Component has been generated yet.

Note: This assumes that the Component has been generated if functions or calls have been set. This means
that components which define a generate method should leave these parameters empty and set them inside
of the generate() method only. A hybrid aproach of partially setting these parameters and then updating
them inside of the generate() method is not advised.

generate()

Generate configured source code for this component.

This function is responsible for any necessary code generation. configure will be called before generate
so this function may draw from any instance attributes (set by configure) for configuration parameters.
This function may be used to populate/modify the functions and calls properties of this Component.

Note: Defining this method is optional - relatively simple components may find it easy enough to simply
define all of the data they may need directly on the class.

finalized = False

finalize()

Make this Component unique.

Uses the globals list to generate and insert globally unique values into the functions and calls prop-
erties to prepare this Component to be used by a Blueprint.

property configuration

Parsed configuration parameters.

This is populated by the configure method, controlled by the options parameter. If this has not yet been
configured, this raises a NotConfigured exception.

34 Chapter 4. Reference

HELIX, Release 2.0.0.dev

configure(**kwargs)
Parse configuration data passed as kwargs.

Configuration values taken from options will be passed to this function as kwargs. This function is re-
sponsible for parsing and storing those configuration options and storing them in configuration.

Parameters
**kwargs – Arbitrary keyword arguments corresponding to fields in options

Note: Although it is possible to pass values of varying types to this method, it is recommended that code
which makes use of configuration parameters assumed that they are a string, since configuration parameters
parsed from command line arguments and configuration files will be passed as strings.

property configured

Indicates if this has been configured.

This attribute is set True by the configure method. Components are reconfigurable, so configure may
still be called if configured is True.

A Configurable with no configuration options is considered to be already configured.

dependencies = []

A list of external dependencies which must be installed.

This list is optional, but must consist of zero or more instances of Dependency (or subclasses) which may
be installed by users.

abstract property description

classmethod install(verbose=False)
Install all dependencies.

This reruns dependency installation regardless of if it has been installed already. This should be safe because
of the requirement that dependency installation methods be repeatable but can be inefficient. Users can
check the installed() method to determine if the installation should be rerun.

Parameters
verbose (bool) – Verbosity.

classmethod installed()

Check if all dependencies have been installed.

Returns
True if all dependencies have been installed already, and False otherwise.

abstract property name

A simple name.

Names should consist of [a-z-]. Make use of the verbose_name property if you would like a pretty-
printable version of this name.

options = {}

A dictionary of configurable options and default values.

This defines which options which may be edited with a call to configure.

4.2. Components 35

HELIX, Release 2.0.0.dev

Example

A subclass with both required and default parameters may be defined as:

options = {
"server": {},
"port": {"default": 1337}

}

classmethod string()

tags = ()

An optional iterable of human-readable tag tuples.

Tags may represent family or component groupings and are fairly loosely defined.

Example

An APT29/SEDINT sample may be defined as (("family", "APT29"), ("sample", "SEDINT"))

abstract property type

A short type descriptor.

This should be set to some constant (a short string) defined in some common location.

validate_configuration()

Custom option validation code.

This optional method may be implemented on subclasses to provide custom configuration validation
and is called by the configure method. If invalid configuration is detected, this method should raise
ConfigurationError. Parsed configuration values are stored in configuration by the time this is
called.

abstract property verbose_name

Verbose name for pretty printing.

abstract property version

A version number.

This should be a string using Semantic Versioning.

class helix.component.Loader

A method of loading one or more Components from a file.

This interface allows external libraries which expose Components to support loading those components from a
file. This can be useful for libraries which cannot expose components as an entrypoint for whatever reason (e.g.,
there are far too many Components to reasonably expose).

Implementing libraries should expose their Loader by their library name at the helix.components.loaders
entrypoint.

abstract load(f)
Implement Component loading here.

Parameters
f (file) – A file-like object from which to read.

Returns
A list of ready to use Component classes.

36 Chapter 4. Reference

https://semver.org/

HELIX, Release 2.0.0.dev

helix.component.load(f)
Load a list of Components from a file.

This attempts to load one or more Components from the given file using any installed and available Component
Loader.

Parameters
f (file) – A file-like object from which to read.

Returns
A list of ready to use Component classes.

Raises

• ValueError – if the given file cannot be parsed with any installed Component loader

• NotImplementedError – if no Component loaders are installed.

4.3 Transforms

class helix.transform.Transform(*args, **kwargs)
A common base class for all transforms.

TYPE_SOURCE = 'source'

A source-to-source transformation.

Setting Transform.type to TYPE_SOURCE indicates to Blueprints that this Transform should be fed source
files and should produce modified source files.

TYPE_ARTIFACT = 'artifact'

An artifact-to-artifact transformation.

Setting Transform.type to TYPE_ARTIFACT indicates to Blueprints that this Transform should be fed
built artifacts and should produce modified built artifacts.

property configuration

Parsed configuration parameters.

This is populated by the configure method, controlled by the options parameter. If this has not yet been
configured, this raises a NotConfigured exception.

configure(**kwargs)
Parse configuration data passed as kwargs.

Configuration values taken from options will be passed to this function as kwargs. This function is re-
sponsible for parsing and storing those configuration options and storing them in configuration.

Parameters
**kwargs – Arbitrary keyword arguments corresponding to fields in options

Note: Although it is possible to pass values of varying types to this method, it is recommended that code
which makes use of configuration parameters assumed that they are a string, since configuration parameters
parsed from command line arguments and configuration files will be passed as strings.

4.3. Transforms 37

HELIX, Release 2.0.0.dev

property configured

Indicates if this has been configured.

This attribute is set True by the configure method. Components are reconfigurable, so configure may
still be called if configured is True.

A Configurable with no configuration options is considered to be already configured.

dependencies = []

A list of external dependencies which must be installed.

This list is optional, but must consist of zero or more instances of Dependency (or subclasses) which may
be installed by users.

abstract property description

classmethod install(verbose=False)
Install all dependencies.

This reruns dependency installation regardless of if it has been installed already. This should be safe because
of the requirement that dependency installation methods be repeatable but can be inefficient. Users can
check the installed() method to determine if the installation should be rerun.

Parameters
verbose (bool) – Verbosity.

classmethod installed()

Check if all dependencies have been installed.

Returns
True if all dependencies have been installed already, and False otherwise.

abstract property name

A simple name.

Names should consist of [a-z-]. Make use of the verbose_name property if you would like a pretty-
printable version of this name.

options = {}

A dictionary of configurable options and default values.

This defines which options which may be edited with a call to configure.

Example

A subclass with both required and default parameters may be defined as:

options = {
"server": {},
"port": {"default": 1337}

}

classmethod string()

supported(source)
Check if the given source is supported.

This method is optional - the default behavior is to assume all sources are suppored.

38 Chapter 4. Reference

HELIX, Release 2.0.0.dev

Parameters
source (str) – The source material for this tranformation.

Returns
True if the target is supported by this transform, False otherwise.

tags = ()

An optional iterable of human-readable tag tuples.

Tags may represent family or component groupings and are fairly loosely defined.

Example

An APT29/SEDINT sample may be defined as (("family", "APT29"), ("sample", "SEDINT"))

abstract property type

A short type descriptor.

This should be set to some constant (a short string) defined in some common location.

validate_configuration()

Custom option validation code.

This optional method may be implemented on subclasses to provide custom configuration validation
and is called by the configure method. If invalid configuration is detected, this method should raise
ConfigurationError. Parsed configuration values are stored in configuration by the time this is
called.

abstract property verbose_name

Verbose name for pretty printing.

abstract property version

A version number.

This should be a string using Semantic Versioning.

abstract transform(source, destination)
Apply this transform.

Applies this transform to the given source and writes the output to destination. If this transform expects
configuration, this method should raise exceptions if configured is False when this is called.

Parameters

• source (str) – The source material for this tranformation.

• destination (str) – The destination to write the output of this transformation.

4.4 Dependencies

class helix.utils.Dependency

A base class for dependency definitions.

This defines the interface for all dependency installers.

4.4. Dependencies 39

https://semver.org/

HELIX, Release 2.0.0.dev

abstract install(verbose=False)
Install this dependency.

Raise a DependencyInstallationFailure on error.

Parameters
verbose (boolean) – Verbosity.

abstract installed()

Check if this dependency is installed.

Returns
True if this has already been installed, and False otherwise.

string()

The string representation of this dependency.

Example

The name of the package to install or the path to a script to run.

4.4.1 Included Dependencies

class helix.utils.ManualPATHDependency(name, help=None)
A manually installed dependency that resides in the PATH.

This is a minor extension of ManualDependency which adds additional functionality to check if target depen-
dency has been installed and resides in the PATH.

Note: name must match the target binary to find in the PATH or this will not work.

installed()

Check the PATH for the existence of name.

class helix.utils.ManualWindowsRegistryDependency(*args, registry, key, **kwargs)
A manually installed dependency that sets a Windows registry key.

This checks for the existence of a Windows registry key to verify the installation status of a dependency.

Parameters

• name (str) – The name of this dependency.

• help (str) – A short description of how to install this dependency manually. Optional, but
recommended.

• key (str) – The full path to the key to check.

installed()

Check the registry for the existence of key.

This uses the built-in winreg API to check for the existence of the key.

class helix.utils.WindowsChocolateyDependency(package)
A dependency that may be installed via the Chocolatey package manager.

Parameters
package (str) – The package name.

40 Chapter 4. Reference

HELIX, Release 2.0.0.dev

Note: These sorts of dependencies require that the plaform under which this Blueprint/Component/Transform
is run includes Chocolatey and assume that it is already installed (i.e., this will not work on Linux).

Note: These dependencies require Administrator permissions to install successfully.

install(verbose=False)
Install the package with Chocolatey.

installed()

Check if the package is installed with Chocolately.

string()

The string representation of this dependency.

Example

The name of the package to install or the path to a script to run.

class helix.utils.LinuxAPTDependency(package)
A dependency that may be installed via the Advanced Package Tool (APT).

Parameters
package (str) – The package name.

Note: These sorts of dependencies require that the plaform under which this Blueprint/Component/Transform
is run includes APT and assume that it is already installed (i.e., this will not work on Windows).

Note: These dependencies require root permissions to install successfully.

install(verbose=False)
Install the package with APT.

installed()

Check if the package is installed with dpkg.

string()

The string representation of this dependency.

Example

The name of the package to install or the path to a script to run.

4.4. Dependencies 41

HELIX, Release 2.0.0.dev

4.5 Testing

class helix.tests.UnitTestCase(methodName='runTest')
The base class for all Blueprint, Component, and Transform tests.

Provides utilities for safely generating builds during unit tests.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

build(configuration)
Build a given configuration in the current working directory.

Tests may make use of the build artifacts to determine success/failure by using utils.run as necessary.

Parameters
configuration – A build configuration dictionary.

Returns
A list of build artifacts from the successful build.

class helix.tests.BlueprintTestCaseMixin

Provides testing utilities and minimal tests for Blueprints.

Note: Requires a base class of UnitTestCase.

abstract property blueprint

The Blueprint name.

test_build_success()

Tests that this Blueprint builds successfully.

Builds this Blueprint on its own with no Components or Transforms. As long as no errors are raised in
building, this test will pass.

class helix.tests.ComponentTestCaseMixin

Provides testing utilities and minimal tests for Components.

Note: Requires a base class of UnitTestCase.

abstract property blueprint

The Blueprint that this Component should be built with.

abstract property component

The Component name.

configuration = {}

Optional configuration parameters for building.

If the Component requires configuration for a basic build, specify an example configuration here.

42 Chapter 4. Reference

HELIX, Release 2.0.0.dev

test_build_success()

Tests that this Component builds successfully.

Builds this Component on its own with the configured Blueprint and nothing else. As long as no errors are
raised in building, this test will pass.

test_duplicate_build()

Tests that duplicating this Component builds successfully.

Attempts a minimal build with only this Component, duplicated. This is a useful test to determine if the
Component has been parameterized successfully. If not, the build will likely fail with errors complaining
about duplicated functions or globals.

class helix.tests.TransformTestCaseMixin

Provides testing utilities and minimal tests for Transforms.

Note: Requires a base class of UnitTestCase.

abstract property blueprint

The Blueprint that this Transform should be built with.

abstract property transform

The Transform name.

configuration = {}

Optional configuration parameters for building.

If the Transform requires configuration for a basic build, specify an example configuration here.

test_build_success()

Tests that this Transform builds successfully.

Builds this Transform on its own with the configured Blueprint and nothing else. As long as no errors are
raised in building, this test will pass.

4.6 Utilities

helix.utils.source(package, resource)
Fetch the content of a specific file in this package.

Parameters

• package (str) – The package path relative to which the resource exists. In most cases you
probably want to supply __name__ to search relative to the current code.

• resource (str) – The resource filename to load.

Returns
The content of the package resource as a string.

helix.utils.substitute(template, safe=True, **kwargs)
Substitute parameters in a template string.

Template substitution makes use of Python string templates (described in PEP 292).

Parameters

• template (str) – The template string.

4.6. Utilities 43

https://www.python.org/dev/peps/pep-0292/

HELIX, Release 2.0.0.dev

• safe (bool) – If True, missing parameters will be ignored and some template parameters
may remain in the return value.

• **kwargs – Template parameters.

Returns
The substituted template string.

helix.utils.find(name, environment=None, guess=None)
Finds a particular binary on this system.

Attempts to find the binary given by name, first checking the value of the environment variable named
environment (if provided), then by checking the system path, then finally checking hardcoded paths in guess
(if provided). This function is cross-platform compatible - it works on Windows, Linux, and Mac. If there are
spaces in the path found, this function will wrap its return value in double quotes.

Parameters

• name (str) – Binary name.

• environment (str) – An optional environment variable to check.

• guess (iterable) – An optional list of hardcoded paths to check.

Returns
A string with the absolute path to the binary if found, otherwise None.

helix.utils.run(cmd, cwd=None, exception=None, propagate=False, stdout=None, stderr=None)
Run the given command as a subprocess.

This function caputres stdout and stderr by default and returns them, and raises the given exception if the
process fails.

Parameters

• cmd (str) – The command to run.

• cwd (str) – The working directory in which to run the command.

• exception – An exception to raise if the command fails.

• propagate (bool) – If True, command output will be written to stdout and stderr of the
current process, otherwise command output is captured and returned (and written to stdout
and stderr if provided). Default: False.

• stdout (file) – An open file-like object or fileno where stdout should be written or None.

• stderr (file) – An open file-like object or fileno where stderr should be written or None.

Returns
Output to stdout and stderr as binary strings.

Note: Without adding sufficient complexity (additional threads) output cannot be both captured and printed
stdout/stderr of the current process in real time. If this is called with propagate=True, then no output will be
returned or written to the provided stdout/stderr arguments.

helix.build.build(configuration, output, options=None)
Build a given configuration.

Builds the given configuration dictionary using output as a working directory.

Parameters

44 Chapter 4. Reference

HELIX, Release 2.0.0.dev

• configuration – A dictionary describing blueprint, components, and transforms to use for
this build.

• output (str) – The path to the output directory.

• options (dict) – An optional dictionary of additional options to be passed to the build
command.

Returns
A list of build artifact paths.

Example

Example configuration dictionary:

{
"name": "test",
"blueprint": {"name": "cmake-cpp"},
"components": [

{"name": "minimal-example"},
{

"name": "configuration-example",
"configuration": { "second_word": "world" }

}
{"class": components.MinimalExampleComponent}

],
"transforms": [

...
]

}

Configuration parameters are passed via the configuration key. Note that Blueprints, Components and Trans-
forms may be specified by either name or directly by class.

4.7 CLI Commands

class helix.management.commands.install.Command

Install external dependencies.

usage: helix install [-h] [-c] [-f] [-v] {blueprints,components,transforms} ...

positional arguments:
{blueprints,components,transforms}
blueprints install dependencies for blueprints
components install dependencies for components
transforms install dependencies for transforms

optional arguments:
-h, --help show this help message and exit
-c, --check check the installation status without installing anything
-f, --fail-fast stop installing if there are any failures
-v, --verbose verbose mode

4.7. CLI Commands 45

HELIX, Release 2.0.0.dev

class helix.management.commands.list.Command

Print details about blueprints, components, and transforms.

usage: helix list [-h] [-s SEARCH] [-d] [-y] [-t] [-c] [-r] [-v] [-vv] [-vvv]
→˓{blueprints,components,transforms} ...

positional arguments:
{blueprints,components,transforms}

blueprints list blueprints
components list components
transforms list transforms

optional arguments:
-h, --help show this help message and exit
-s SEARCH, --search SEARCH

search with a given string
-d, --description include description
-y, --type include type
-t, --tags include tags
-c, --configuration include configuration parameters
-r, --dependencies include dependencies
-v, --verbose include description and tags
-vv, --very-verbose verbose plus configuration
-vvv, --very-very-verbose

very verbose plus type and␣
→˓dependencies

class helix.management.commands.build.Command

Build a blueprint with a set of components and transforms.

usage: helix build [-h] {blueprint,json} ...

positional arguments:
{blueprint,json}
blueprint manually specify blueprint, components, and transforms
json build from a json configuration file

optional arguments:
-h, --help show this help message and exit

class helix.management.commands.datasetsimilarity.Command

Generate a dataset from a collection of Components.

usage: helix dataset-similarity [-h] [-c [COMPONENTS [COMPONENTS ...]]] [-l [file␣
→˓[file ...]]] [-t [TRANSFORMS [TRANSFORMS ...]]] [-s SAMPLE_COUNT]

[-m MAXIMUM_SAMPLES] [-n COMPONENT_COUNT] [-w␣
→˓WORKERS] [-v]

{simple,random,walk} output

positional arguments:
{simple,random,walk} dataset generation strategy
output output directory where dataset should be written

(continues on next page)

46 Chapter 4. Reference

HELIX, Release 2.0.0.dev

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-c [COMPONENTS [COMPONENTS ...]], --components [COMPONENTS [COMPONENTS ...]]

component(s) to include (by name)
-l [file [file ...]], --load [file [file ...]]

load additional component(s) from one or more files
-t [TRANSFORMS [TRANSFORMS ...]], --transforms [TRANSFORMS [TRANSFORMS ...]]

transform(s) to apply to all samples (by name)
-s SAMPLE_COUNT, --sample-count SAMPLE_COUNT

number of samples to attempt to generate
-m MAXIMUM_SAMPLES, --maximum-samples MAXIMUM_SAMPLES

maximum number of samples to generate
-n COMPONENT_COUNT, --component-count COMPONENT_COUNT

number of components per sample
-w WORKERS, --workers WORKERS

number of parallel workers to use (default: <count(CPUs)/2>)

class helix.management.commands.test.Command

Run tests.

usage: helix test [-h] {unit,system,integration} ...

positional arguments:
{unit,system,integration}
unit unit tests for blueprints, components, or transforms
system unit tests for core helix functionality
integration integration tests for combinations of blueprints,

components, and transforms

optional arguments:
-h, --help show this help message and exit

4.7. CLI Commands 47

HELIX, Release 2.0.0.dev

48 Chapter 4. Reference

CHAPTER

FIVE

ABOUT

5.1 Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

© 2021 Massachusetts Institute of Technology

• Subject to FAR 52.227-11 – Patent Rights – Ownership by the Contractor (May 2014)

• SPDX-License-Identifier: MIT

This material is based upon work supported by the Department of Defense under Air Force Contract No. FA8721-05-C-
0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Department of Defense.

5.1.1 License

MIT License

© 2021 Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

49

HELIX, Release 2.0.0.dev

50 Chapter 5. About

INDEX

B
Blueprint (class in helix.blueprint), 31
blueprint (helix.tests.BlueprintTestCaseMixin prop-

erty), 42
blueprint (helix.tests.ComponentTestCaseMixin prop-

erty), 42
blueprint (helix.tests.TransformTestCaseMixin prop-

erty), 43
blueprints (helix.component.Component property), 33
BlueprintTestCaseMixin (class in helix.tests), 42
build() (helix.blueprint.Blueprint method), 32
build() (helix.tests.UnitTestCase method), 42
build() (in module helix.build), 44

C
calls (helix.blueprint.Blueprint property), 31
calls (helix.component.Component attribute), 34
callsites (helix.blueprint.Blueprint property), 31
Command (class in helix.management.commands.build),

46
Command (class in he-

lix.management.commands.datasetsimilarity),
46

Command (class in helix.management.commands.install),
45

Command (class in helix.management.commands.list), 45
Command (class in helix.management.commands.test), 47
compile() (helix.blueprint.Blueprint method), 32
Component (class in helix.component), 33
component (helix.tests.ComponentTestCaseMixin prop-

erty), 42
ComponentTestCaseMixin (class in helix.tests), 42
configuration (helix.component.Component property),

34
configuration (helix.tests.ComponentTestCaseMixin

attribute), 42
configuration (helix.tests.TransformTestCaseMixin at-

tribute), 43
configuration (helix.transform.Transform property),

37
configure() (helix.component.Component method), 34
configure() (helix.transform.Transform method), 37

configured (helix.component.Component property), 35
configured (helix.transform.Transform property), 37

D
date (helix.component.Component property), 33
DATE_FORMAT (helix.component.Component attribute),

33
dependencies (helix.blueprint.Blueprint attribute), 32
dependencies (helix.component.Component attribute),

35
dependencies (helix.transform.Transform attribute), 38
Dependency (class in helix.utils), 39
description (helix.blueprint.Blueprint property), 32
description (helix.component.Component property),

35
description (helix.transform.Transform property), 38

F
finalize() (helix.component.Component method), 34
finalized (helix.component.Component attribute), 34
find() (in module helix.utils), 44
functions (helix.blueprint.Blueprint property), 31
functions (helix.component.Component attribute), 33

G
generate() (helix.blueprint.Blueprint method), 31
generate() (helix.component.Component method), 34
generated (helix.component.Component property), 34
globals (helix.component.Component attribute), 34

I
install() (helix.blueprint.Blueprint class method), 32
install() (helix.component.Component class method),

35
install() (helix.transform.Transform class method), 38
install() (helix.utils.Dependency method), 39
install() (helix.utils.LinuxAPTDependency method),

41
install() (helix.utils.WindowsChocolateyDependency

method), 41
installed() (helix.blueprint.Blueprint class method),

33

51

HELIX, Release 2.0.0.dev

installed() (helix.component.Component class
method), 35

installed() (helix.transform.Transform class method),
38

installed() (helix.utils.Dependency method), 40
installed() (helix.utils.LinuxAPTDependency

method), 41
installed() (helix.utils.ManualPATHDependency

method), 40
installed() (helix.utils.ManualWindowsRegistryDependency

method), 40
installed() (helix.utils.WindowsChocolateyDependency

method), 41

L
LinuxAPTDependency (class in helix.utils), 41
load() (helix.component.Loader method), 36
load() (in module helix.component), 36
Loader (class in helix.component), 36

M
ManualPATHDependency (class in helix.utils), 40
ManualWindowsRegistryDependency (class in he-

lix.utils), 40

N
name (helix.blueprint.Blueprint property), 33
name (helix.component.Component property), 35
name (helix.transform.Transform property), 38

O
options (helix.component.Component attribute), 35
options (helix.transform.Transform attribute), 38

R
run() (in module helix.utils), 44

S
sane() (helix.blueprint.Blueprint method), 31
setUp() (helix.tests.UnitTestCase method), 42
source() (in module helix.utils), 43
string() (helix.blueprint.Blueprint class method), 33
string() (helix.component.Component class method),

36
string() (helix.transform.Transform class method), 38
string() (helix.utils.Dependency method), 40
string() (helix.utils.LinuxAPTDependency method), 41
string() (helix.utils.WindowsChocolateyDependency

method), 41
substitute() (in module helix.utils), 43
supported() (helix.transform.Transform method), 38

T
tags (helix.blueprint.Blueprint property), 31

tags (helix.component.Component attribute), 36
tags (helix.transform.Transform attribute), 39
tearDown() (helix.tests.UnitTestCase method), 42
test_build_success() (he-

lix.tests.BlueprintTestCaseMixin method),
42

test_build_success() (he-
lix.tests.ComponentTestCaseMixin method),
42

test_build_success() (he-
lix.tests.TransformTestCaseMixin method),
43

test_duplicate_build() (he-
lix.tests.ComponentTestCaseMixin method),
43

Transform (class in helix.transform), 37
transform (helix.tests.TransformTestCaseMixin prop-

erty), 43
transform() (helix.blueprint.Blueprint method), 32
transform() (helix.transform.Transform method), 39
TransformTestCaseMixin (class in helix.tests), 43
type (helix.blueprint.Blueprint property), 33
type (helix.component.Component property), 36
type (helix.transform.Transform property), 39
TYPE_ARTIFACT (helix.transform.Transform attribute),

37
TYPE_SOURCE (helix.transform.Transform attribute), 37

U
UnitTestCase (class in helix.tests), 42

V
validate_configuration() (he-

lix.component.Component method), 36
validate_configuration() (he-

lix.transform.Transform method), 39
verbose_name (helix.blueprint.Blueprint property), 33
verbose_name (helix.component.Component property),

36
verbose_name (helix.transform.Transform property), 39
version (helix.blueprint.Blueprint property), 33
version (helix.component.Component property), 36
version (helix.transform.Transform property), 39

W
WindowsChocolateyDependency (class in helix.utils),

40

52 Index

	Getting Started
	HELIX at a Glance
	Quick Install Guide
	Prerequisites
	Installation
	Additional Dependencies
	Development

	Using the HELIX CLI
	Writing Your First Component
	Building a Python Package
	Writing the Component
	Registering the Component
	Adding Configuration Options
	Using External Template Files
	Adding Dependencies
	Testing the Component

	Writing Your First Transform
	Writing the Transform
	Registering the Transform
	Adding Configuration Options
	Adding Dependencies
	Testing the Transform

	Developing a New Blueprint
	Writing the Blueprint
	Registering the Blueprint
	Writing a Component for the Blueprint
	Adding Another Callsite
	Adding Dependencies
	Testing the Blueprint

	Further Reading & Next Steps

	Using HELIX
	Building
	Building with CLI Arguments
	Building from JSON Configuration
	External Components

	Dataset Generation
	Generating Similarity Datasets
	Generating Classification Datasets
	External Components

	Testing
	Using the Python API

	Extensions
	Blind HELIX

	Reference
	Blueprints
	Components
	Transforms
	Dependencies
	Included Dependencies

	Testing
	Utilities
	CLI Commands

	About
	Disclaimer
	License

	Index

